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By the use of locally supported basis functions for spherical spline interpolation
the applicability of this approximation method is extended, since the resulting inter-
polation matrix is sparse and thus efficient solvers can be used. In this paper we
study locally supported kernels in detail. Investigations on the Legendre coefficients
allow a characterization of the underlying Hilbert space structure. We show how
spherical spline interpolation with polynomial precision can be managed with
locally supported kernels, thus giving the possibility to combine approximation
techniques based on spherical harmonic expansions with those based on locally
supported kernels. � 1997 Academic Press

1. INTRODUCTION

Spherical splines have been successfully applied for analyzing both, exact
and noisy data discretely given on the sphere, cf. e.g. [7, 9, 24, 25]. They
have also been proved to be a powerful tool for the solution of boundary
value problems with discretely given data, even for non�spherical boun-
daries (see [8, 10, 22]). The advantage of spherical spline interpolation lies
mainly in two points: (i) It is applicable (under mild conditions) to all
scattered data situations on the sphere. (ii) Since the spline interpolant
can be proved to be the solution of a variational problem (in particular it
minimizes a certain semi-norm under interpolatory constraints) unpleasant
oscillations can be avoided.

Unfortunately, the progress of spherical spline interpolation was
restrained, since all applied kernels had a support which covers the whole
sphere, so that the resulting interpolation matrix had in general no zero
entries. Thus, the areas of application were restricted to problems with not
too many given data points.

This situation has completely changed when it was recognized that also
kernels with a local support could be used within the existing framework,
cf. [11, 19, 21]. Hence the numerical effort for storing and solving the
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linear system coming from the interpolation conditions can be drastically
reduced by the use of sparse matrix solvers. Although the numerical
applicability has been proved in several examples, there are some gaps in
the theory of spherical spline interpolation with locally supported kernels.
It is the intention of this paper to close these gaps.

Of basic importance for the characterization of the underlying Hilbert
space structure are the Legendre coefficients occuring in the series expan-
sion of the reproducing kernels. Of particular interest are those coefficients
that become zero for a certain given kernel, since this means that the
Hilbert space does not contain spherical harmonics of the corresponding
degree. It will be shown in this paper, that for a large class of locally sup-
ported kernels the zeros of the Legendre coefficients correspond to the
zeros of certain Gegenbauer polynomials. Another aspect is that it was so
far not known how spherical spline interpolation with locally supported
kernels can be managed with polynomial precision up to a certain order.
This problem will also be solved in this paper. Finally it is shown how
error estimates can be proved for the described interpolation procedure.

The advantages of the locally supported kernels are not for free. One has to
cope with the calamity, that a representation of the (iterated) kernels in terms
of elementary functions is not known. But this difficulty can be overcome, since
the series expansion of the kernels in terms of Legendre polynomials can be
used for an a-priori approximation of the kernel by e.g. a piecewise linear
function. This can be done, of course, with any desired accuracy.

The paper is organized as follows: after some preliminary facts given in
Chapter 2, we will briefly review the existing spherical spline theory in
Chapter 3. In Chapter 4 we shall then show the main results: locally sup-
ported kernels are introduced, and their Legendre expansion is analyzed.
We will investigate the zero coefficients of the Legendre expansion of the
kernel to arrive at a characterization of the underlying Hilbert spaces.
Finally, locally supported kernels for spline interpolation with polynomial
precision are constructed. Chapter 5 shows then that the introduced kernels
are applicable for spline interpolation and gives some error estimates. After
that, some conclusions are drawn in the sixth chapter.

2. PRELIMINARIES

Let 0=[x # R3 | |x|=1] be the unit sphere in R3 with surface measure
d|. Throughout this paper we use greek letters (!, ', ...) to denote points
of 0. The scalar product in R3 is written by } . Let L2(0) and C( p)(0)
stand for the space of square-integrable or p-times continuously differen-
tiable (real) functions on 0, respectively. The usual L2(0)-inner product
is denoted by ( } , } )L 2(0) .
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For the reader's convenience, we list some basic facts on the theory of
spherical harmonics used in this paper. As reference, we mention e.g. [16].
Let 2* denote the Beltrami operator on 0. Then it is well-known that
the equation 2*F=*F is solvable for an infinitely often differentiable
F: 0 � R and * # R if and only if *=&n(n+1) for some n # N0 . The
infinitely often differentiable eigenfunctions of 2* with respect to the eigen-
value &n(n+1) are the spherical harmonics of order n. We collect them in
the space Harmn . Its dimension is dim(Harmn)=2n+1. We assume in the
following that [Yn, 1 , ..., Yn, 2n+1] is an L2(0)-orthonormal system of
spherical harmonics of order n. Since spherical harmonics of different
order are known to be orthogonal, we can introduce the orthogonal sum
Harm0, ..., m=�m

n=0 Harmn . Furthermore, we obtain the orthonormal set
[Yn, j ]n=0, ..., j=1, ..., 2n+1, which is known to be complete in L2(0) with
respect to ( } , } )L 2(0) and closed in C(0) with respect to the uniform
topology.

Of importance for the following studies is the addition theorem, which
says that for any n # N0 and all !, ' # 0 it holds

:
2n+1

j=1

Yn, j (!) Yn, j (')=
2n+1

4?
Pn(! } '),

where Pn : [&1, 1] � R is the Legendre polynomial of degree n. They are
known to satisfy the recurrence relation

P0(t)=1, P1(t)=t,
(1)

(n+1) Pn+1(t)+nPn&1(t)&(2n+1) tPn(t)=0, n�1.

Furthermore, we have for t # [&1, 1]

P$n+1(t)&P$n&1(t)=(2n+1) Pn(t), n�1. (2)

For later use, we mention the following estimate (cf. [14]) for t # (&1, 1):

|Pn(t)|�� 2

?(n+1�2) - 1&t2
. (3)

From the addition theorem and the completeness of the spherical har-
monics it follows that the Fourier expansion of F # L2(0) can be written
as

Ft :
�

n=0

2n+1
4? |

0
F(') Pn(' } ) d|(').
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Let G # L2[&1, 1] and ' # 0 be fixed. The '-zonal function
G(' } ): 0 � R given by ! [ G(' } !) is in L2(0) and is axisymmetric with
respect to the axis ', i.e. the value at the point ! # 0 depends only on the
inner product ! } '. Since |!&'|=- 2&2! } ', zonal functions can be seen
to be the spherical counterpart to radial basis functions in Euclidean
spaces. The Funk�Hecke formula tells us that for any Yn # Harmn and
' # 0,

|
0

G(' } !) Yn(!) d|(!)=G 7(n) Yn(' ),

where

G7(n)=2? |
1

&1
G(t) Pn(t) dt.

Applying the addition theorem it follows that the Fourier expansion of the
'-zonal function G(' } ) is

G(' } )t :
�

n=0

2n+1
4?

G7(n) Pn(' } ). (4)

Due to a result of [13] the series on the right hand side of (4) converges
in uniform sense to G(' } ), provided that G is Lipschitz�continuous on
[&1, 1].

We use zonal functions to introduce spherical convolutions, see e.g. [4]
or [5]. For G # L2[&1, 1] and F # L2(0) we set

(G V F )(!)=|
0

G(! } ') F(') d|('), ! # 0.

Of particular importance is the convolution with a second zonal function:
let H # L2[&1, 1]. An easy application of the Funk�Hecke formula shows
that

(G V H )(!, `)=|
0

G(! } ') H(' } `) d|('), !, ` # 0,

depends only on the inner product of ! and `, (cf. also [3]). Thus,
(G V H)( } `) is a `-zonal function, or in other words, G V H can be seen to
be a function defined on the interval [&1, 1]. In the following we will
make frequently use of this identification. It can be easily seen that for
G, H # L2[&1, 1]

(G V H )7 (n)=G7(n) H7(n), n # N0 .
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The convolution of a function G # L2[&1, 1] with itself leads to the
so-called iterated functions G (q) : [&1, 1] � R by the successive definition

G (1)(! } `)=G(! } `),

G (q+1)(! } `)=|
0

G (q)(! } ') G (1)(' } `) d|('), q�1.

Obviously, (G (q))7 (n)=[G7(n)]q. Note that if supp G=[h, 1], we
trivially have

supp G(' } )=[! # 0 | h�! } '�1],

and it is not difficult to see that

supp G (2)(' } )={[! # 0 | 2h2&1�! } '�1]
0

for h>0
for &1�h�0.

(5)

3. SPHERICAL SPLINES

In this chapter we state the general theory of spherical splines as
developed in [7, 9, 24, 25]. Since the theory is well-established in the
meanwhile, our introduction will be brief and all proofs are omitted.
However, in spite of the settings in [9], we present a slightly generalized
theory, since we allow some Legendre coefficients of the reproducing kernel
to be zero.

3.1. Reproducing Kernel Hilbert Spaces

We start with

Definition 3.1. Let [An]n=0, 1, .../R be a sequence. We introduce a
decomposition N0=N _ N0 , N & N0=< by

N=[n # N0 | An{0]

N0=[n # N0 | An=0].

The sequence [An]n=0, ... is called {-summable, { # R, if

:
n # N

2n+1
4?

n2{

A2
n

<�.

A 0-summable sequence is simply called summable.
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Let the sequence [An]n=0, ... be fixed. For the space

E([An]; 0)={F # C (�)(0) | (F, Yn, j )L 2 (0)=0 for all n # N0 and

:
n # N

A2
n :

2n+1

j=1

(F, Yn, j )L 2 (0)<�=
we introduce an innner product by

(F, G)H([An]; 0)= :
n # N

A2
n :

2n+1

j=1

(F, Yn, j )L2 (0) (G, Yn, j )L2(0) ,

F, G # E([An]; 0),

and define the space H([An]; 0) to be the completion H([An]; 0)=
E([An]; 0), where the completion is understood with respect to the
topology given by ( } , } )H([A n]; 0) . Then we end up with a Hilbert space. If
there is no confusion likely to arise, we write in the following H instead
of H([An]; 0).

The order of summability of the sequence [An]n=0, ... determines the
smoothness of the functions in H in the following way:

Lemma 3.2. Let [An]n=0, ... be {-summable. Then H/C (k)(0) if {�k.

The proof of this lemma is straightforward by considering the series
expansion of a function in H and using estimates for the derivatives of the
Legendre polynomials.

The Hilbert space H corresponding to a summable sequence [An]n=0, ...

admits a reproducing kernel KH ( } , } ) since the evaluation functionals
H % F [ F(!) are continuous for every ! # 0 (cf. [2]). It can be easily seen,
that KH ( } , } ) is given by the uniformly convergent series

KH(!, ')= :
n # N

2n+1
4?

1
A2

n

Pn(! } ').

Since the function KH ( } , ') is an '-zonal function, we frequently write
KH (!, ')=KH (! } '), i.e. we assume KH to be defined on the interval
[&1, 1]. Note that the Legendre coefficients are given by

K7
H (n)={A&2

n

0
for n # N

for n # N0

.

Since they satisfy K 7
H (n)�0, the kernels KH are positive definite, as we

shall see in the next section.
Let m # N0 and assume that the summable sequence [An]n=0, ... satisfies

An{0 for n=0, ..., m. Then the space H=H([An]; 0) can be decomposed
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into the orthogonal sum H=H0, ..., m�H=
0, ..., m , where H0, ..., m=Harm0, ..., m .

Both subspaces are then reproducing kernel Hilbert spaces with respect to
( } , } )H=( } , } )H0, ..., m+( } , } )H

=
0, ..., m

. Obviously, the corresponding reproducing
kernels are

KH0, ..., m
(!, ')= :

m

n=0

2n+1
4?

1
A2

n

Pn(! } ')

KH
=
0, ..., m

(!, ')= :

n>m
n # N

2n+1
4?

1
A2

n

Pn(! } '),

i.e. KH ( } , } )=KH0, ... , m
( } , } )+KH

=
0, ... , m

( } , } ). The norm & }&H
=
0, ..., m

of H=
0, ..., m

can be seen to be a seminorm in H with kernel Harm0, ..., m . This fact will
be important for the forthcoming definition of spherical splines.

3.2. Definition of Spherical Splines

The basic idea of spherical spline interpolation can be described as follows:
assume that there are given a set of nodal points XN=['1 , ..., 'N]/0 and
a set of values [ y1 , ..., yN]/R. Suppose further that there is a fixed
reproducing kernel space H which is orthogonally decomposed into
H=H0, ..., m�H=

0, ..., m , as described in the last section. Then the task of
spline interpolation is to find a solution S # H of

&S&H
=
0, ..., m

= min
F # IN

&F&H
=
0, ..., m

, (6)

where IN=[F # H | F('i )=yi , i=1, ..., N]. In other words, we search for
the interpolant S # H, which has the smallest H=

0, ..., m-norm.
It follows from (6) that if the data come from a function in the space

Harm0, ..., m , this function is exactly reproduced by the spline. That is, what
we call polynomial precision of order m. Note that we also treat the case
formally written by m=&1. In this situation the Hilbert space H is not
decomposed and the spline interpolation minimizes the norm &S&H among
all interpolating functions.

In order to ensure the well-posedness of problem (6), we have to make
some assumption on the set XN of nodal points and on the reproducing
kernel KH (in full analogy to spline theory in Euclidean spaces, cf. e.g.
[15]). Let for m # N0 , M=�m

n=0 (2n+1)=(m+1)2 be the dimension of
Harm0, ..., m . We call a pointset XM=['1 , ..., 'M] fundamental system with
respect to Harm0, ..., m , if the matrix

Y0, 1('1) } } } Ym, 2m+1('1)

\ b . . . b +Y0, 1('M ) } } } Ym, 2m+1('M)
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is regular. In this case, the problem of interpolation in Harm0, ..., m with
respect to XM is uniquely solvable. Let N�M. Then we call a pointset
XN=['1 , ..., 'N]/0 of pairwise different points admissible with respect to
Harm0, ..., m , if it contains a fundamental system with respect to Harm0, ..., m .
By changing the order we can always assume that the set ['1 , ..., 'M]/XN

is unisolvent with respect to Harm0, ..., m . We will see lateron that this is
exactly the requirement on XN to ensure that the spline interpolation
problem is uniquely solvable.

However, also the reproducing kernel has to satisfy a condition:

Definition 3.3. A function K: [&1, 1] � R is called strictly positive
definite, if

:
N

i=1

:
N

k=1

aiK('i } 'k) ak>0 (7)

for all choices of pointsets XN=['1 , ..., 'N] with pairwise distinct points,
and all non-zero vectors (a1 , ..., aN ) # RN. If equality with zero is also
allowed in (7), the function K is called positive definite.

Positive definite kernels for radial basis approximation in Euclidean
spaces have been investigated in [15], where also the strict positive
definiteness of a large class of radial basis functions has been shown. (For
a general overwiew on the theory of radial basis functions in Euclidean
spaces, see e.g. [17].) In the spherical case, Schoenberg [20] has proved,
that K is positive definite if and only if K7(n)�0 for all n # N0 . A sufficient
condition for K to be strictly positive definite is found in [26], see also
[11]. However, this condition is not applicable for the locally supported
kernels, as we shall see later.

For spline interpolation with polynomial precision a weaker condition
on the kernels can be applied:

Definition 3.4. The continuous function K: [&1, 1] � R is called con-
ditionally stricly positive definite of order m, if (7) holds for any Harm0, ..., m-
admissible system XN=['1 , ..., 'N] and any (a1 , ..., aN){0 satisfying

Y0, 1('1) } } } Y0, 1('N ) a1

\ b . . . b +\ b +=0.

Ym, 2m+1('1) } } } Ym, 2m+1('N ) aN

Let [An]n=0, ... be a summable sequence. Assume m # N0 to be fixed
and consider the space H=H([An]; 0) with orthogonal decomposition
H=H0, ...., m�H=

0, ..., m . Let XN=['1 , ..., 'N]/0 be an admissible system
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with respect to Harm0, ..., m and assume that the reproducing kernel KH
=
0, ..., m

is conditionally strictly positive definite of order m. Then we call any
function S # H of the form

S(!)= :
m

n=0

:
2n+1

j=1

cn, jYn, j (!)+ :
N

i=1

aiKH
=
0, ..., m

('i , !), ! # 0, (8)

spherical spline with respect to XN , if the coefficients a1 , ..., aN satisfy the
linear equations

:
N

i=1

aiYn, j ('i )=0, n=0, ..., m, j=1, ..., 2n+1.

Note that here and in the following the results hold also for the special
case, where we do not consider the orthogonal decomposition of H, but
perform the interpolation directly in H. This case was denoted before by
m=&1.

We summarize the main results on spherical spline interpolation in the
following theorem:

Theorem 3.5. Let m, H=H0, ..., m �H=
0, ..., m and XN be as before.

Assume that there is a given data vector ( y1 , ..., yN ) # RN. Then there exists
a uniquely defined solution in S # H of the spline interpolation problem

&S&H
=
0, ..., m

= min
F # IN

&F&H
=
0, ..., m

where IN=[F # H | F('i )=yi , i=1, ..., N]. S is a spherical spline of the
form (8), where the coefficients cn, j and ai solve the system of linear
equations

:
N

i=1

aiKH
=
0, ..., m

('k , 'i )+ :
m

n=0

:
2n+1

j=1

cn, jYn, j ('k), k=1, ..., N,

and

:
N

i=1

aiYn, j ('i )=0, n=0, ..., m, j=1, ..., 2n+1.

Furthermore, any F # IN satisfies

&F&2
H

=
0, ..., m

=&S&2
H

=
0, ..., m

+&S&F&2
H

=
0, ..., m

.

For the proof of this theorem and many results on the proper choice of the
space H, i.e. the choice of the kernel KH we recommend [9] or [11].
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It is obvious that the system of linear equations stated in the last
theorem is very labourous to solve, since all the matrix elements are in
general different from zero. However, if the kernel KH

=
0, ..., m

(respectively KH

for the case m=&1) had only a local support, the matrix would be sparse,
and so the system could be solved very efficiently. Therefore, we will
show in the following how splines with locally supported kernels can be
constructed.

4. LOCALLY SUPPORTED KERNELS

In this chapter, we introduce locally supported kernels that allow the
definition of reproducing kernel Hilbert spaces and which will be proved to
be strictly positive definite, so that they can be applied for spline interpola-
tion. We will consider both types of kernels, namely KH and KH

=
0, ..., m

, the
second one being characterized by K7

H
=
0, ..., m

(n)=0 for n=0, ..., m. The basic
idea for the construction of the kernels is to start with a simple locally sup-
ported one-dimensional function and then to use the spherical convolution
in order to assure that all the Legendre coefficients are non-negative. The
construction of the kernels KH

=
0, ..., m

uses then (besides the convolution)
certain linear combinations of simpler kernels. For the characterization of
the underlying space H, it is important to know, which Legendre coef-
ficients of the constructed kernels are zero. This will be discussed in detail
in Section 4.2.

4.1. Definitions and Recurrence Relations

We start with the definition of the piecewise polynomial function
B(k)

h : [&1, 1] � R, for k=0, 1, ..., and h # (0, 1), which has already been
considered in [12] in another context. We set

B (k)
h (t)={0

(t&h)k�(1&h)k

for &1�t�h
for h<t�1

. (9)

Let ' # 0 be fixed. Then the '-zonal function B (k)
h (' } ): 0 � R has the local

support

supp B (k)
h (' } )=[! # 0 | h�! } '�1].

From (5) we know that the iterated '-zonal function (B (k)
h )(2) (' } ) has the

support supp(B (k)
h )(2) (' } )=[! # 0 | 2h2&1�! } '�1]. It is also obvious,

that if we allowed h�0, we would get supp(B (k)
h )(2) (' } )=0, i.e. the func-

tion would be supported over the whole sphere 0. That is the reason why
we restrict the parameter h to the interval (0, 1).
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Expanding B (k)
h in terms of Legendre polynomials, we find

B(k)
h = :

�

n=0

2n+1
4?

B(k) 7
h (n)Pn ,

where by the Funk�Hecke formula the Legendre coefficients B(k) 7
h (n) are

given by

B (k) 7
h (n)=2? |

1

h

(t&h)k

(1&h)k Pn(t) dt.

A recursion formula for the B (k) 7
h (n) can be derived by considering the

integrals

In, k=|
1

h
(t&h)k Pn(t) dt. (10)

Straightforward integration yields

I0, k=
(1&h)k+1

k+1
, I1, k=I0, k

k+1+h
k+2

.

From the recurrence formula (1) we see (n�1)

(n+1) In+1, k+nIn&1, k&(2n+1) In, k+1&(2n+1) hIn, k=0.

Furthermore, we find by partial integration and (2) that

(2n+1) In, k+1=&(k+1)(In+1, k&In&1, k). (11)

Combining these results, we arrive at the following recursion formula:

(n+k+2) In+1, k=(2n+1) hIn, k+(k+1&n) In&1, k .

This gives us

Lemma 4.1. For k�0 and n�1 we have

B (k) 7
h (0)=2?

1&h
k+1

(k+2) B(k) 7
1 (1)=(k+1+h) B (k) 7

h (0)

(n+k+2) B (k) 7
h (n+1)=(2n+1) hB (k) 7

h (n)+(k+1&n) B (k) 7
h (n&1).

182 MICHAEL SCHREINER



File: 640J 303712 . By:XX . Date:17:04:97 . Time:08:56 LOP8M. V8.0. Page 01:01
Codes: 2242 Signs: 1405 . Length: 45 pic 0 pts, 190 mm

Fig. 1. The kernels B (1)
h (cos �) (left) and the iterated kernel (B (1)

h )(2) (cos �) (right) for the
parameter h=0.6.

Next we shall consider the asymptotic behaviour of |B (k) 7
h (n)| for

fixed h # (0, 1) as n � �. Let h # (0, 1) be fixed. For k=0 and n�1 we get
from (2)

In, 0=|
1

h
Pn(t) dt=

1
2n+1

(Pn+1(h)&Pn&1(h)).

Using estimate (3) we see that |B (0) 7
h (n)|=O(n&3�2) as n � �. From (11)

we conclude recursively that |B (k) 7
h (n)|=O(n&3�2&k), as n tends to infinity.

Thus, for k�0,

:
�

n=0

2n+1
4?

(B (k)
h ) (2)7

(n)<�,

i.e. the sequence [B (k) 7
h (n)]&1, n=0, ..., is summable. Therefore the kernel

(B (k)
h )(2) can be seen to be the reproducing kernel of the space H=

H([1�B (k) 7
h (n)]; 0) (cf. Figure 1). Note, that it may happen that

B(k) 7
h (n)=0 for some n # N. In this case, 1�B (k) 7

h (n) has then to be sub-
stituted by zero in the definition of the space H. Nevertheless, for a com-
plete characterization of H it is important to know which numbers
B(k) 7

h (n) are zero. This is the topic of the next section.

4.2. Zeros in the Legendre Expansion

For a complete characterization of the space H=H([1�B (k) 7
h (n)]; 0)

we have to answer the question which coefficients in the Legendre expan-
sion of the kernel B (k)

h are zero. We will show now, that this answer is
related to the zeros of certain Gegenbauer polynomials.

The main result of this section is

Theorem 4.2. For h # (0, 1) and k=0, 1, ..., we have:

(i) B(k) 7
h (n){0 for n=0, 1, ..., k+2.
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(ii) For n�k+2, B(k)7
h (n)=0 if and only if Ck+3�2

n&k&1(h)=0, where
Ck+3�2

m denotes the Gegenbauer polynomial of order m with respect to *=k+3�2.

Before we come to the proof of this theorem, we mention the following
consequence:

Corollary 4.3. Let k�0.

(i) There exists h # (0, 1) such that B (k) 7
h (n){0 for all n # N0 .

(ii) Let m # N0 be given. Then there exists a number h0 # (0, 1) such
that for all h # (h0 , 1) and all n�m, B (k) 7

h (n){0.

Proof. Part (i) follows immediately from Theorem 4.2 since there exist
only countably many points being a zero of a Gegenbauer polynomial.

It follows from the theory of orthogonal polynomials that the largest
number h # (0, 1) for which Ck+3�2

n&k&1(h)=0 for a n with k+2�n�m is the
largest zero of C k+3�2

m&k&1 (cf. e.g. [23]). So just take this value as h0 . This
proves part (ii). K

The first result is of more theoretical concern, since it is also known that
the set of all zeros of the Gegenbauer polynomials C k+3�2

n , n=0, ..., is
dense in [&1, 1]. But the second statement is very useful. It shows that it
is possible by suitable choices of the parameter h # (0, 1) to ensure that all
spherical harmonics up to a certain order are contained in the space H.

Proof of Theorem 4.2. We know from Lemma 4.1 that B (k) 7
h (0)>0 and

B(k) 7
h (1)>0. Furthermore it follows from the recurrence formula that

B(k) 7
h (n+1)>0 as long as n�k+1. This proves (i).
The second statement is a consequence of the results shown below in this

section. K

Lemma 4.1 shows that each B (k) 7
h (n) is a polynomial of degree n+1 in

the variable h which is zero for h=1. Thus, the linear factor (1&h) can be
divided, and we define

b(k)
n (h)=

1
2?(1&h)

B (k) 7
h (n), n=0, 1, ..., h # (0, 1).

Then b (k)
n is a polynomial of degree n in h which we will consider for

h # [&1, 1]. From the recurrence relation for the B (k) 7
h (n) (cf. Lemma 4.1)

we immediately get the following recursion formula for b (k)
n (h) (n�1):

b (k)
0 (h)=

1
k+1

(12)
(k+2) b (k)

1 (h)=(k+1+h) b (k)
0 (h)

(n+k+2) b (k)
n+1(h)=(2n+1) hb (k)

n (h)+(k+1&n) b (k)
n&1(h).
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As first result we mention

Lemma 4.4. For all k�0 we have

b (k)
0 (&1)=

1
k+1

b (k)
n (&1)=

(k+1&n) } } } } } (k&1)k
(k+1) } } } } } (k+1+n)

, n�1.

Proof. Immediately by induction using (12). K

Lemma 4.5. The l th derivatives, l�0, of b (k)
n satisfy for h=&1:

(i) for l>n: (b (k)
n )(l ) (&1)=0

(ii) for l=n: (b (k)
n )(l ) (&1)=

(2l )!
2 l

1
(k+1) } } } } } (k+1+l )

(iii) for l<n:

(b (k)
n )(l ) (&1)=

(n&l+1) } } } } } (n+l )
2 l

(k+1&n) } } } } } (k&l )
(k+1) } } } } } (k+1+n)

.

Proof. Since b(k)
n is a polynomial of degree n, part (i) is obvious. We

prove part (ii) and (iii) by induction. For l=0 the assertion is just
Lemma 4.4. An easy calculation shows also the validity for l=1. Assume
now, (ii) and (iii) are true for all l $�l. Then we obtain from the recursion
formula and Leibniz' rule

(b (k)
l+1)(l+1) (h)=

2l+1
l+k+2

h(b (k)
l )(l+1) (h)+(l+1)

2l+1
l+k+2

(b (k)
l )(l ) (h)

+
k+1&l
l+k+2

(b (k)
l&1)(l ) (h)

=(l+1)
2l+1

l+k+2
(b (k)

l )(l ) (h).

Part (ii) follows then immediately by setting h=&1.
In order to prove the result for (b (k)

n )(l+1) (&1) if n�l+1 we now argue
again by a nested induction, this time with respect to the variable n. For
n=l+1 the result has just been proved. A similar calculation yields the
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case n=l+2. Under the assumption that (iii) is true for all n$ with
l+1�n$�n we have

(b (k)
n+1)(l+1) (h)=

2n+1
n+k+2

h(b (k)
n )(l+1) (h)+(l+1)

2n+1
n+k+2

(b (k)
n )(l ) (h)

+
k+1&n
n+k+2

(b (k)
n&1)(l+1) (h).

Setting h=&1 and inserting the known formulas for (b (k)
n )(l+1), (b (k)

n )(l )

and (b (k)
n&1)(l+1) the result follows after some lengthy but straightforward

calculations. K

This lemma shows in particular that (b(k)
k+1)(l ) (h)=0 at the point h=&1

for l=0, ..., k. But since b (k)
k+1 is a polynomial of degree k+1 it is clear that

b(k)
k+1 is of the form

b (k)
k+1=:k(h+1)k+1 (13)

with a constant :k . This constant can be determined by taking the (k+1)st
derivative in (13) and substituting h=&1. With the results of Lemma 4.5
we arrive at

(2k+2)!
2k+1

1
(k+1) } } } } } (2k+2)

=:k(k+1)!.

Thus, :k=1�(2k+1(k+1)).
Using the recursion formula (12) we see b (k)

k+2(h)=hb (k)
k+1(h). As a conse-

quence, all b (k)
n (h), n�k+1 have a zero of order k+1 at h=&1. Hence

the definition

c (k)
n (h)=

1
:k(h+1)k+1 b (k)

n+k+1(h), n�0, (14)

yields a polynomial in h of degree n. Note that for n�k+1 it holds
B(k) 7

h (n)=0 if and only if c (k)
n&k&1(h)=0. Hence, Theorem 4.2 is proved, if

we have shown that c (k)
n is up to a multiplicative constant the Gegenbauer

polynomial C *
n with *=k+3�2. This is shown in the last lemma of this

section:

Lemma 4.6. For k�0, n # N0 , and *=k+3�2

C *
0(h)=c (k)

0 (h)

C (*)
n (h)=

1
n!

`
n&1

j=0

(2k+3+j ) c (k)
n (h), n�1.
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Proof. Set

C� *
0(h)=c (k)

0 (h)

C� *
n(h)=

1
n!

`
n&1

j=0

(2k+3+j) c (k)
n (h), n�1.

We will show that the C� *
n satisfy the recurrence relation of the Gegenbauer

polynomials

C *
0(h)=1

C *
1(h)=2*h (15)

(n+1) C *
n+1(h)&2(*+n) hC *

n(h)+(2*+n&1) C *
n&1(h)=0, n�1,

for *=k+3�2, cf. e.g. [1] or [23].
It is obvious that the initial values fulfil

C� *
0(h)=c (k)

0 (h)=
1
:k

b (k)
k+1(h)=1

and

C� *
1(h)=(2k+3) c (k)

1 (h)=(2k+3)
1

:k(h+1)k+1 b (k)
k+2(h)

=(2k+3) h
1

:k(h+1)k+1 b (k)
k+1(h)=(2k+3)h=2*h.

Using (12) and (14) we obtain from

(n+2k+3) b(k)
n+k+2(h)&(2n+2k+3) hb (k)

n+k+1(h)+nb (k)
n+k(h)=0

that

(n+2k+3) C� *
n+1(h)&

(2k+3+n)(2n+2k+3)
n+1

hC� *
n(h)

+
(2k+3+n)(2k+2+n)n

n(n+1)
C� *

n&1(h)=0.

Thus,

(n+1) C� *
n+1(h)&2(*+n) C� *

n(h)+(2*+n&1) C� *
n&1(h)=0,

which is just (15), as required. K
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4.3. Reproducing Kernel Spaces with Locally Supported Kernels

Summarizing our previous results we have proved the following

Theorem 4.7. Let for k�0 and h # (0, 1) the function B (k)
h : [&1, 1]�R

be defined as in (9). Let the sets N=[n # N0 | B (k) 7
h (n){0] and N0=

[n # N0 | B (k) 7
h (n)=0] be determined by Theorem 4.2. The sequence

An={1�B(k) 7
h (n)

0
for n # N

for n # N0

(16)

is summable and defines the reproducing kernel Hilbert space H=
H([An]; 0). The reproducing kernel of H is then

KH (!, ')=(B (k)
h )(2) (! } '), !, ' # 0,

with

supp KH ( , ')=[! # 0 | 2h2&1�! } '�1].

Thus, reproducing kernel Hilbert spaces with locally supported repro-
ducing kernels are found. If we have shown that the kernels KH=(B(k)

h )(2)

are strictly positive definite functions, the spline interpolation can be per-
formed efficiently for the case m=&1, i.e. without polynomial precision.
However, taking m�0, the modified kernels KH

=
0, ..., m

arising in the inter-
polation matrix, are now globally supported. Thus, we shall now present a
method to construct also kernels KH

=
0, ..., m

that are locally supported.
The idea is simple: let m # N0 be fixed. Choose m+2 pairwise different

h1< } } } <hm+2 # (0, 1). Then determine real numbers k1 , ..., km+2 in such
a way that

K(t)= :
m+2

i=1

ki B (k)
hi

(t), t # [&1, 1]

satisfies

K7(n)=0, n=0, ..., m. (17)

If we then define

KH (!, ')= :
m

n=0

2n+1
4?

Pn(! } ')+K (2)(! } '), !, ' # 0, (18)
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we obtain the reproducing kernel of the space H=H([An]; 0), where the
sequence [An]n=0, ... is given by

1�(k1B (k)7
h1

(n)+ } } } +km+2B (k)7
hm+2

(n)) for n # N

An={1 for n=0, ..., m.

0 for n # N0

Thereby we have used N=[n # N0 | �m+2
i=1 kiB (k)7

hi
(n){0] and N0=[n�

m+1 | �m+2
i=1 kiB (k) 7

hi
(n)=0]. Furthermore, it follows that KH

=
0, ..., m

=K (2),
and hence

supp KH
=
0, ..., m

(' } )=[! # 0 | 2h2
1&1�! } '�1]

for all ' # 0. So it remains to find k1 , ..., km+2 # R so that (17) is fulfilled.

Theorem 4.8. Let for fixed m # N0 , 0<h1< } } } <hm+2<1. Then there
exist k1 , ..., km+2 # R so that

K(t)= :
m+2

i=1

ki B (k)
hi

(t), t # [&1, 1],

satisfies

K7(n)=0 for n=0, ..., m. (19)

If we require in addition

k1+ } } } +km+2=1, (20)

the numbers ki are uniquely determined. The support of K (2)(' } ) is for fixed
' # 0 given by

supp K (2)(' } )=[! # 0 | 2h2
1&1�! } '�1].

Proof. We only have to show that the system of linear equations
defined by (19) and (20) is uniquely solvable. It can be written as

\
1

B(k)7
h1

(0)
b

B (k)7
h1

(m)

} } }
} } }
. . .
} } }

1
B (k)7

hm+2
(0)

b
B (k)7

hm+2
(m)+\

k1

k2

b
km+2

+=\
1
0
b
0+ . (21)

But we have seen in Lemma 4.1 that the system [1, B (k)7
h (0), ..., B (k) 7

h (m)]
is a system of polynomials in h with degrees 0, ..., m+1, respectively. Thus,
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Fig. 2. The kernel K(cos �) of Theorem 4.8 for m=2 (left). The values h1 , ..., h4 and
k1 , ..., k4 are given by (h1 , ..., h4)=(0.6, 0.7, 0.8, 0.9), (k1 , ..., k4)=(&1, 4, &6, 4). On the right
hand side there is the iterated kernel K (2)(cos �).

they build a unisolvent system for interpolation on the interval [&1, 1] (cf.
[6]). Therefore the system (21) is uniquely solvable, as required. The
property of the support of K is obvious from the previous discussion. K

An example is illustrated in Figure 2.

5. SPHERICAL SPLINES WITH LOCALLY SUPPORTED
BASIS FUNCTIONS

In order to establish spherical splines based on locally supported kernels
one aspect is missing, namely the conditionally strict positive definiteness of
the described kernels, which will ensure the regularity of the linear system
to be solved for spline interpolation. This is the topic of Section 5.1.

The estimations in uniform norm of the spline interpolant as proved e.g.
in [9] are given by the use of series expansions in terms of the Legendre
polynomials. For our situation, error estimates can be obtained in an easier
way, as shown in Section 5.2.

5.1. Strict Positive Definiteness

A sufficient condition for the spline interpolation matrix to be solvable
is the conditionally strict positive definiteness of order m of the reproducing
kernel KH

=
0, ..., m

. We are able to show even more:

Theorem 5.1. Let k�0.

(i) If h # (0, 1) then (B(k)
h )(2) is strictly positive definite.

(ii) Let m # N0 and 0 < h1 < } } } < hm+2 < 1, and assume that
K : [&1, 1] � R is defined as in Theorem 4.8. Then K (2) is strictly positive
definite.
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Proof. Assertion (i) is equivalent to the positive definiteness of the sym-
metric matrix

(B (k)
h )(2) ('1 } '1) } } } (B (k)

h )(2) ('1 } 'N )

\ b . . . b + (22)

(B (k)
h )(2) ('N } '1) } } } (B (k)

h )(2) ('N } 'N )

for any pointset XN=['1 , ..., 'N] of pairwise distinct points. However,
since

(B (k)
h )(2) ('i } 'k)=|

0
B (k)

h ('i } `) B(k)
h (` } 'k) d|(`)

=(B (k)
h ('i } ), B (k)

h ('k } ))L2 (0) ,

the matrix (22) can be seen to be a Gram matrix, and is therefore positive
definite if and only if the functions B (k)

h ('i } ), i=1, ..., N, are linearly
independent. But this can be concluded from the discontinuity of the
kth derivative of B (k)

h ( } ) in the following way: assume that F=
�N

i=1 aiB (k)
h ('i } )=0. Thus, F is trivially of class C(�). On the other hand

side, the k th derivative of a function ! [ B (k)
h ('i } !) in direction

'i&('i } !)! does not exist for all ! # 0i with 0i=[! # 0 | ! } 'i=h].
Suppose now, that an ai (without loss of generality, say a1) is different
from zero. Since there exists a point !1 # 01 "�N

j=2 0j , it follows that the
described k th derivative of F at the point ! does not exist, a contradiction.
Thus, a1= } } } =aN=0 is proved, and therefore part (i) is shown. The
second statement follows by similar arguments. K

5.2. Convergence

An estimation in uniform topology is given by

Theorem 5.2. Let h # (0, 1), k�1, and let [An]n=0, ... be defined as in
(16). Then there exists a constant C>0 with the following property: let
F # H=H([An ]; 0) and assume that XN=['1 , ..., 'N]/0 consists of
pairwise distinct points. If S # H is the uniquely determined interpolating
spline with respect to the data set [F('1), ..., F('N )] then we have for all
! # 0

|S(!)&F(!)|�C &F&H 3N ,

where the nodal width 3N is defined by

3N=max
! # 0

min
i=1, ..., N

|!&'i |.
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Proof. Let ! # 0. Then there exists an i # [1, ..., N] such that |!&'i |
�3N . Since S('i )=F('i ), we obtain by the triangle inequality

|SN (!)&F(!)|�|SN (!)&SN ('i )|+|F(!)&F('i )|.

From the reproducing property it follows that

|S(!)&S('i )|=|(KH (!, } )&KH ('i , } ), SN )H |

and

|F(!)&F('i )|=|(KH (!, } )&KH ('i , } ), F )H |.

By the Cauchy�Schwarz inequality we obtain

|S(!)&S('i )|�&KH (!, } )&KH ('i , } )&H &S&H

|F(!)&F('i )|�&KH (!, } )&KH ('i , } )&H &F&H .

Since we know from Theorem 3.5 that &S&H�&F&H ,

|S(!)&F(!)|�2 &KH (!, } )&KH ('i , } )&H &F&H .

For the estimation of &KH (!, } )&KH ('i , } )&H we mention first that the
function (B(k)

h )(2) : [&1, 1] � R is Lipschitz-continuous, i.e. for a constant
C� >0 it holds |(B (k)

h )(2) (t)&(B (k)
h )(2) (t$)|�C� |t&t$| for &1�t, t$�1.

Hence,

&KH (!, } )&KH ('i , } )&2
H=|KH (!, !)+KH ('i , 'i )&2KH (!, 'i )|

=2 |(B (k)
h )(2) (1)&(B (k)

h )(2) (! } 'i )|

�2C� |1&! } 'i |

=C� |!&'i |
2

�C� 32
N .

Taking the square root, the assertion follows with C=2 - C� . K

The case m�0, i.e. spline interpolation with polynomial precision up to
order m, can be handled similarly. Since for the proof one has only to com-
bine the methods of [9] and the arguments of the last proof, we just state

Theorem 5.3. Let m�0 and k�1. Assume that 0<h1< } } } <hm+2<1
and let k1 } } } km+2 # R be determined as in Theorem 4.8. The function

KH (t)=\ :
m

n=0

2n+1
4?

Pn(t)+ :
m+2

i=1

ki B (k)
h i

(t)+
(2)

, t # [&1, 1],
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defines the reproducing kernel of the space H. Let F # H and assume
XN=['1 , ..., 'N] to be admissible with respect to Harm0, ..., m . Assume that
S # H is the uniquely determined solution of

&S&H= min
G # IN

&G&H
=
0, ..., m

with IN=[G # H | G('i )=F('i ), i=1, ..., N], as described in Theorem 3.5.
Then there exists a constant C>0 (only dependent on H and the unisolvent
set ['1 , ..., 'M]/XN ) such that for all ! # 0 the estimate

|S(!)&F(!)|�C &F&H
=
0, ..., m

3N

is valid, where 3N is defined as in the last theorem.

6. CONCLUSIONS

The results of the last chapters have shown how spherical spline inter-
polation can be performed by the use of locally supported basis functions
for both types of interpolation, viz. with and without polynomial precision.
Thus, the possible area of application for spherical splines is extended,
since now the numerical effort is reduced dramatically. Examples for
applications in relevant problems can be found in [19] or [21].

The locally supported kernels KH
=
0, ..., m

will offer the possibility to com-
bine the well-established methods using expansions in terms of spherical
harmonics with localizing methods, as e.g. the described spline methods,
but also wavelet expansions with these kernels are possible. It is assumed,
that such approaches will be of importance for future representations of e.g.
the earth's gravitational field, cf. e.g [18, 21].
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